Ana Sayfayı Ziyaret Et / Fraktal Resimleri / Fraktal Resimleri

hits: 56598   size: 89.4 KB

 

 

Fraktal Resimleri 30.03.2008 23:55


« Önceki Resim:
 

     
 

Sonraki Resim: »



Fraktal Resimleri

Paylaş



« Önceki Resim:
 

     
 

Sonraki Resim: »

 
Açıklama:

Fraktal parçalanmış ya da kırılmış anlamına gelen Lâtince fractus kelimesinden gelir. İlk olarak 1975'de Polonya asıllı matematikçi Benoit Mandelbrot tarafından ortaya atıldığı varsayılmaktadır. Kendi kendini tekrar eden ama sonsuza kadar küçülen sekilleri, kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününü inceler. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza kadar sürebilir; tam tersi de her parçanın her bir parçası büyütüldüğünde, gene cismin bütününe benzemesi olayıdır. Doğada görebilen örnekler örneğin bazı bitkilerin yapısı dır.

Teoremin gelişimi

Benoit Mandelbrot, IBM Laboratuvarlarında çalışmaya başladığında Oyun Teorisi, iktisat, emtia fiyatları gibi çeşitli alanlarda çalışan bir mühendisti. Bu çalışmalarını tamamladığında veri iletim hatlarındaki gürültü üzerinde çalışmaya başladı. Mühendisler, veri aktarımı sırasında oluşan gürültü karşısında çaresiz kalmışlardı. Mühendislerin bu soruna bulabildikleri en iyi çare sinyal gücünü arttırmaktan ileri gidememişti. Fakat sinyal gücünün arttırılması da tam bir çözüm sağlamamıştı. İletişim esnasında halen gürültüye bağlı hatalar oluşurdu.

İletim hatlarındaki gürültü doğası gereği gelişi güzel olmasına rağmen kümeler halinde gelmekteydi. İletişim süresi boyunca hatasız periyotlar arasında hatalı periyotlar yer alırdı. Hatalı periyotların incelenmesi, hata paterninin sanıldığından daha karmaşık olduğunu ortaya koymuştur. Mandelbrot, bir günlük veri trafiğini birer saatlik periyotlara ayırdı. Daha sonra, hatanın gözlendiği periyotları ele alıp bu periyotlar yirmişer dakikalık parçalara böldü ve yine gördü ki, bu birer saatlik periyotların içinde de yine hatasız bölümler bulunurdu. Mandelbrot, hatalı bölümler daha kısa zaman aralıklarına bölmeye devam etti. Ve sonunda hatasız periyotların halen var olduğunu gösterdi. Bu arada aykırı bir durum Mandelbrot'un dikkatini çekti: hatalı periyotların hatasız periyotlara oranı periyodun uzunluğundan bağımsız olarak neredeyse sabit kalıyordu.

Yukarıdaki tanıma uyan dağılım fonksiyonuna sahip bir dizi, 19. yüzyılda yaşamış olan bir matematikçinin, Georg Cantor'un anısına Cantor dizisi olarak bilinir. Cantor dizisini oluşturmak için L uzunluğunda bir doğru parçası alınır. Doğru parçasının ortadaki üçte birlik kısmı silinir. Artık L/3 uzunluğunda 2 adet doğru parçası vardır. Bu doğru parçalarının da ortadaki üçte birlik kısımları çıkarılır ve bu işlem sonsuza kadar tekrarlanırsa elde edilen yapının adı Cantor Tozudur. Bu tozun koordinatları bir Cantor dizisi oluşturur. Cantor Tozu sonsuz adet noktadan oluşur ama toplam uzunluğu sıfırdır.

Mandelbrot, yukarıdaki gürültü dağılımını kullanarak sinyal gücünün arttırılmasının gürültüye bağlı hatalardan kaçınılamayacağını göstermiştir. Yapılması gereken hataları engellemek değil, düzeltecek bir mekanizma geliştirmektir.

Mandelbrot’nun kendi kendine sorduğu şu soru, daha sonraki çalışmalarını yönlendiren temel işlev olmuştur: "İngiltere sahil şeridinin uzunluğu nedir?" "Bu sorunun yanıtı kullanmakta olduğunuz ölçüm aracının uzunluğuna bağlıdır." diyordu Mandelbrot. Mesela bir metrelik bir pergelin sahil boyunca yürütüldüğünü düşünün. Bulacağınız uzunluk yaklaşık bir değer olacaktır. Zira pergel, uzunluğu bir metreden daha kısa olan girinti ve çıkıntıları atlayacaktır. Pergeli yarım metreye indirdiğinizde bulacağınız sonuç bir öncekinden daha büyük, daha doğru, ama halen yaklaşık sonuç olacaktır. Bu sefer de pergel yarım metreden daha kısa olan girinti çıkıntıları ölçemeyecektir. Pergeli daha da küçülttüğünüzde elde edeceğiniz sonuç daha büyük ama halen hatalı bir değerdir. Bu zihinsel deneyi sonsuza kadar götürdüğünüzde ilginç ortaya ilginç sonuçlar çıkar. Sahil şeridi Öklid geometrisine uygun olsa idi (örneğin çember), pergel küçüldükçe yapılacak ölçüm gerçekten de çemberin çevresine eşit olacaktı. Ama sahil şeridi Mandelbrot'un öngördüğü şekilde ise ölçek atom boyutlarına inene kadar bulunan uzunluk sürekli artmaya devam eder, ancak atom ölçeğinde sonlu bir değere gidebilir. Dikkat edilirse, Cantor Tozu'nda olduğu gibi burada da ölçü biriminden (bir anlamda gözlem boyutundan) bağımsız olarak hata halen vardır.

Mandelbrot'nun bir sonraki sorusu ise şu olmuştur: "Bir iplik yumağının boyutu nedir?" Uzaktan bakıldığında yumak bir noktadan ibarettir, yani boyutu sıfırdır. Daha yakından yapılan gözlemlerde yumak yüzeyinde düzensizlikler bulunan bir küre gibidir. Boyut sayısı üçe çıkmıştır. Daha yakından bakıldığında yumağı oluşturan tek boyutlu iplik ayrık olarak gözlemlenebilmektedir.Tek boyutlu ipliğe büyüteçle bakıldığında iplik üç boyutlu sütunlar gibi görülür. Mikroskop altında sütunlar tek boyutlu liflere, lifler ise sonunda boyutsuz noktalara dönüşmektedir. O halde, yumağın gerçek boyutu nedir?

Mandelbrot, bir birim cinsinden ölçülemez olan cisimlerin bir pütürlülük derecesine sahip olduğunu ve bu pütürlülük derecesini ölçmenin bir yolunu bulmuştur. Mandelbrot'ya göre göre ölçek değiştiğinde düzensizlik derecesi sabit kalmaktaydı. 1975 yılında Mandelbrot pütürlülük derecesinin ismini de koymuş oldu: Fraktal boyut. Pütürlülük özelliği gösteren cisimler de fraktallar adını almışdır.

Fraktal terimi taşıdığı felsefik anlam sayesinde ve fraktalların pschedelic biçimlere sahip olması gibi özelliklerinden dolayı diğer sanatları da etkilemiş ve özellikle müzik alanında sesin görsel yansıması, fraktal şekillerin sese dönüşümü gibi alt başlıklar altında kendine yer buldu. Bu özelliklerinin yanısıra "düzendeki kaos - kaostaki düzen" sloganı ile tanımlanan fraktal kavramı özellikle rock müzik dalında kendisinden etkilenen gruplara adını vermiştir. Arjantinli progressive rock grubu "Fraktal" bu grupların en tanınanıdır. Ülkemizde de adında Arjantinli meslektaşlarıyla aynı adı taşıyan pyschedelic ve progressive rock grubu "Fraktal" faaliyetlerini sürdürür.

Anahtar kelimeler: Fraktal, Resimleri, Resmi, Fraktal, Oluşumu, Hareketleri, Hareketi, fraktal, Wallpapers
İndirilme: 7
Puan: 4.00 (3 )
Ekleyen: Resimci78

 

 

 

 

Yorum:

There are no comments for this image

 

 

 

 Yorum gönder


İsim giriniz:

Yorumunuz için başlık girin:

Yorum:





Please enter the letters or digits that appear in the image. If you have problems identifying the image, click on it to get a new one.

 

 

Main Menu


Home

Resim Kutusu

En İyi Resimler

Yeni Yüklenen Resimler

Advanced search

 

Aradığın Resmi Kolayca Bul

 

 

 

Kayıtlı Kullanıcılar

Kullanıcı Adı:


Şifrenizi Girin:




 Şifremi Unuttum

 

 

RSS Feed: Fraktal Resimleri (comments)
 

Powered by 4images 1.7.6 Copyright © 2002 4homepages.de

Harikasozler.net